Polynomial-time algorithm for learning optimal tree-augmented dynamic Bayesian networks
نویسندگان
چکیده
The identification of conditional dependences in longitudinal data is provided through structure learning of dynamic Bayesian networks (DBN). Several methods for DBN learning are concerned with identifying inter-slice dependences, but often disregard the intra-slice connectivity. We propose an algorithm that jointly finds the optimal inter and intra time-slice connectivity in a transition network. The search space is constrained to a class of networks designated by tree–augmented DBN, leading to polynomial time complexity. We assess the effectiveness of the algorithm on simulated data and compare the results to those obtained by a state of the art DBN learning implementation, showing that the proposed algorithm performs very well throughout the different experiments. Further experimental validation is made on real data, by identifying non-stationary gene regulatory networks of Drosophila melanogaster.
منابع مشابه
Learning Optimal Augmented Bayes Networks
Naive Bayes is a simple Bayesian classifier with strong independence assumptions among the attributes. This classifier, despite its strong independence assumptions, often performs well in practice. It is believed that relaxing the independence assumptions of a naive Bayes classifier may improve the classification accuracy of the resulting structure. While finding an optimal unconstrained Bayesi...
متن کاملRestricted Bayesian Network Structure Learning
Learning the structure of a Bayesian network from data is a difficult problem, as its associated search space is superexponentially large. As a consequence, researchers have studied learning Bayesian networks with a fixed structure, notably naive Bayesian networks and tree-augmented Bayesian networks, which involves no search at all. There is substantial evidence in the literature that the perf...
متن کاملTitle: Incremental Learning of Tree Augmented Naive Bayes Classifiers Authors:
Machine learning has focused a lot of attention at Bayesian classifiers in recent years. It has seen that even Naive Bayes classifier performs well in many cases, it may be improved by introducing some dependency relationships among variables (Augmented Naive Bayes). Naive Bayes is incremental in nature but, up to now, there are no incremental algorithms for learning Augmented classifiers. When...
متن کاملIncremental Learning of Tree Augmented Naive Bayes Classifiers
Machine learning has focused a lot of attention at Bayesian classifiers in recent years. It has seen that even Naive Bayes classifier performs well in many cases, it may be improved by introducing some dependency relationships among variables (Augmented Naive Bayes). Naive Bayes is incremental in nature but, up to now, there are no incremental algorithms for learning Augmented classifiers. When...
متن کاملA POLYNOMIAL TIME BRANCH AND BOUND ALGORITHM FOR THE SINGLE ITEM ECONOMIC LOT SIZING PROBLEM WITH ALL UNITS DISCOUNT AND RESALE
The purpose of this paper is to present a polynomial time algorithm which determines the lot sizes for purchase component in Material Requirement Planning (MRP) environments with deterministic time-phased demand with zero lead time. In this model, backlog is not permitted, the unit purchasing price is based on the all-units discount system and resale of the excess units is possible at the order...
متن کامل